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LIST OF ABBREVIATIONS 

1 C NMR carbon nuclear magnetic resonance 

~ H NMR hydrogen nuclear magnetic resonance 

3HA 3- hydroxyalkanoate 

3HBCoA 3-hydroxybutyrate coenzyme A 

AcCI acetyl chloride 

Bn benzyl 

Boc tent-butoxycarbonyl 

BTCA benzyltrichloroacetimidate 

CoA coenzyme A 

DBU 1,8-Diazabicyclo[5,4,0]undec-7-ene 

DCC N,N'-Dicyclohexylcarbodiimide 

DMAP N,N-Dimethyl-p-hydroxyaniline 

DMSO dimethyl sulfoxide 

DPPA diphenylphosphonic azide 

FAS fatty acid synthase 

HA hydroxyalkanoates 

HACoA coenzyme A hydroxyalkanoates 

HF hydrogen fluoride 

KOH .potassium hydroxide 

LDA Lithium diisopropylamide 

MCL medium-chain-length 
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Me methyl 

NAD+ nicotinamide adenine dinucleotide 

NADH nicotinamide adenine dinucleotide, reduced form 

NADPH nicotinamide adenine dinucleotide phosphate, reduced form 

PHAs poly(hydroxyalkanoates) 

PHAS poly(hydroxyalkanoates) synthase 

PHB poly(3-hydroxybutyrate) 

PKS polyketide synthase 

psi pound per square inch 

Py pyridine 

SCL short-chain-length 

TBDMS tert-butyldimethylsilyl 

TEA Triethylamine 

TFAA trifluoroacetic anhydride 

THE tetrahydrofuran 

TLC thin layer chromatography 

TMS trymethylsilyl 

TMSCI trimethylsilyl chloride 
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INTRODUCTION 

In the last century petrochemical polymers have become one of the most used materials 

in our society given their versatility and low cost; however, it is known that these polymers 

are not environmentally friendly (Zinn, 2001). Thus, given the growing concern over the 

harmful effect of olefin-derived plastics on the environment, poly(hydroxyalkanoates) 

(PHAs) have been identified as environmentally friendly biological plastics due to their 

thermoplastic properties and high biodegradability in soil (see table 1) (Merrick, 2002; Zinn, 

2001; Jendrossek, 1996 ). In addition PHAs can be used as a base for the synthesis of 

pharmacological and medical products (Zinn, 2001; Lee, 1999). However, the biodiversity 

these polymers exhibit and the potential of these materials as alternatives for chemically 

synthesized polymers have only begun to be explored. 

Table 1. Potential- applications of PHAs 

Type of application Products 

Replacement of petrochemical 
plastics 
Wound management 

Vascular system 

Drug delivery 

Substitutes 

Delivery agent 

Dental 

Bottles, films, fibers, packaging materials, 

Sutures, skin substitutes, nerve cuffs, surgical meshes, 
staples 
Heart valves, cardiovascular fabrics, vascular grafts 

Micro- and nanospheres for anticancer therapy 

Dairy cream substitutes (Yalpani, 1993) 

Flavor delivery agent in different types of food 
(Yalpani 1993) 
Barrier material for guided tissue regeneration in 
• eriodontitis 
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A wide array of bacterial species produce biodegradable PHAs as carbon and 

energy reserves from a variety of carbon sources and they are usually produced under 

conditions of limiting nutritional elements such as N, P, S, or O in the presence of excess 

carbon (Zhang, 2002; Amara, 2002; Kamachi, 2001; Steinbiichel, 2001; Lee, 1999; Kraak, 

1997; Jendrosessek, 1996). PHAs are deposited intracellularly in the form of granules and 

can amount to 90% of the dry cell mass under controlled fermentation conditions (Zhang, 

2002; Jendrosessek, 1996). PHAs can have a variety of different monomers but it is essential 

for the biodegradability and biocompatibility of these polymers to have complete 

stereospecificity; all chiral carbon atoms in the backbone of the polymer have R 

configuration (see Figure 1) (Zinn, 2001). 

H 

Figure 1. Chemical structure of poly(hydroxyalkanoates). All monomers have a chiral 
center (*) in the R configuration and R varies according to the alkyl chain of the monomer. 

Chiral hydroxycarboxylic acids_, the monomer unit of PHAs, can be used as the 

base for a variety of chemicals such as antibiotics, vitamins, and pheromones (Lee, 1999). 

Unfortunately, these acids contain a chiral center and two functional groups (OH and COON) 

that make their chemical synthesis cumbersome and expensive. Consequently, it can be 

thought that enantiomerically pure aldol acetates, 2-alkenoic acids, ~-hydroxyalkanols, ~3- 

acyllactones, and ~i-hydroxyacid esters can be prepared by depolymerizing biosynthesized 

PHAs (Qi, 2000; Madison, 1999; Kraak, 1997). In addition, if the polymerase only utilizes R 



www.manaraa.com

monomers for polymer biosynthesis it could be possible to separate a racemic mixture, 

because the (R)-(-)-hydroxycarboxylic acids would be polymerized into PHAs and the (S)- 

(-)-hydroxycarboxylic acids would remain in solution as monomers. 

OH O 

S CoA 
synthase 

Where Coenzyme A is: 

HS 

CoASH 

O O O 
N O—P—O-P—O 
H O- O-

O OH 
PO3" 

Coenzyme A 

Figure 2. Biosynthesis of poly(hydroxyalkanoates) with. the concomitant release of 
coenzyme A 

In most cases the PHAs are polymerized in the cell from coenzyme A (CoA) 

thioester derivatives of hydroxyalkanoates (HACoA) by a PHA synthase (PHAS) to make 

PHAs with the release of CoA as shown in Figure 2 (Zhang, 2002; Amara, 2002; 

Steinbuchel, 2001; Ballard, 1987). The most common and abundant PHA is poly(3- 

hydroxybutyrate), (PHB) (Figure 1; R=Me), and its biosynthesis has been the focus of most 

studies. However, this class of polymers demonstrates great biodiversity. In the last three 
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decades nearly 125 monomer units have been identified in bacterially produced PHAs 

(Zhang, 2001; Jendrosessek, 1996). 

Classification of PHA Synthases 

On the basis of their substrate specificity and protein products PHAs can be arranged into 

three different types (Zhang, 2002; Amara, 2002; Kamachi, 2001; Steinbuchel, 2001; Rhem, 

2001; Miih, 1999). Type I and type II PHA synthases consist of only one type of subunit 

(polypeptide chain) and recent studies indicate that the active site consists of aggregates of 

more than one subunit (Steinbuchel, 2001). Type III PHA synthases consist of two different 

types of subunits (polypeptide chains) that aggregate. 

Table 2. Properties of PHA synthases. 

Type I Type II . Type III 

Species that 
represents each type 
Substrate 

Subunit 

Molecular mass of 
subunit 

Ralstonia eutropha 

C3-CS HACoAs 

One type 

~64 kDa 

Pseudomonas 
oleovorans 
C6-C~4 HL~ICOL~S 

One type 

~62 kDa 

Allochromatium 
vinosum 
C3-CS HACoAs 

Two types 

~40 kDa 

Type I synthases, represented by PHA synthase from Ralstonia eutropha, prefer 

short-chain-length (SCL) monomers that contain from 3 to 5 carbon atoms (Zhang, 2002, 

Steinbuchel, 2001; Muh, 1999). Type II synthases, represented by Pseudomonas oleovorans, 
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incorporate preferentially 3-hydroxyfariy acid monomers ofinedium-chain-length (MCL) 

that contain 6 to 14 carbon atoms. Finally, the type III synthases, represented by the PHA 

synthase from Allochromatium vinosum, have a preference for SCL monomers, therefore, 

having similar substrate specificity as type I synthases. The properties of these polymerases 

are summarized in Table 2. 

Historical Outline 

The interest of PHAs dates to 1926 when the French scientist Lemoigne, at the Institute 

Pasteur, first observed the production of poly(3-hydroxybutyrate) (PHB) (Zinn, 2001; 

Jendrossek, 1996; Merrick, 1961; Lemoigne, 1926). All of his studies were carried out on a 

bacterium called Bacillus megaterium and he was able to identify PHB as an inclusion body 

in the bacteria. In addition, Lemoigne realized that PHB was a homopolymer that consisted 

of 3-hydroxybutyric acid linked through ester bonds between the 3-hydroxyl group and the 

carboxylic group of the next monomer. 

In 1961, Merrick and DOudoroff studied the bacterial production of PHB from its COA- 

thioester monomers in both Bacillus megaterium and Rhodospirillum rub~um (Merrick, 

1961). Merrick and coworkers carried out in vitro kinetic studies on the polymerization Of 

3HBCoA, showing for the first time the role of PHB synthase as a catalyst in the 

polymerization reaction of 3HBCoA (Griebel, 1968). The authors also proposed. that the 

active site of the enzyme contained a thiol group which .would be covalently bound to the 

polymer. In the same study they were also able to determine the effect of incubation time, 
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protein concentration, and pH on the rate of polymerization with the bound PHA synthase. 

In a later study, Griebel and Merrick unsuccessfully tried to obtain an active PHA synthase in 

soluble form (Griebel, 1971). Tomita and coworkers were the first group to isolate a soluble 

PHA in 1976. In their studies the authors were able to obtain an active enzyme and studied 

both the granule-bound and the soluble forms of PHA synthase of Zoogloea ramigera (Fukui, 

1976). 

A more detailed mechanism for the polymerization of 3HBCoA was not proposed until 

1987 (Ballard, 1987). They proposed that two thiolates in the active site of the synthase 

participate in the covalent catalysis of the polymer synthesis as shown in Figure 2. In this 

mechanism one thiol group (S1H) covalently binds to a hydroxyalkanoic acid received from 

the CoA-thioester. The growing polymer is covalently bound to the second thiol group as 

shown in Figure 3. 

According to this mechanism the condensation step occurs via a four component 

transition state having a thiol group free at all times for a new monomer to be incorporated 

into the polymer chain. Ballard and coworkers also suggested that the polymer chain goes 

back and forth between the two thiol groups in the active site. Stubbe and coworkers, in 

order to understand the differences between type I and type III synthases, researched and 

characterized the mechanism of polymerization by the PHB synthase of Chromatium 

vinosum, a type III synthase (Muh, 1999). This study further demonstrated that two thiol 

groups and covalent catalysis are required for the polymerization process. Later, Stubbe and 

coworkers illustrated the similarities in the catalytic mechanism and architecture of the active 
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site in the type I and III PHA synthases of R. eutropha and A. vinosum (~uan, 2001; Jia, 

2ooi~. 

S~ H 
OH O 

O O O ~~~ S.CoA 

S2 -OC ~ ~07 n " ~OH 

p rote i n 

O OH 

S1 v \ 
0 0 0 

S2 Oi `~ _07 n ~ ~OH 

Figure 3. Proposed model for the reaction mechanism of PHAS. 

The activities of different PHA synthases were studied almost simultaneously. Dawes 

and coworkers conducted in vitro polymerization studies on R. eutropha using CoA derived 

monomers containing longer alkyl chains, from 6 to 10 carbon atoms (Haywood, 1989). 

Their results showed that the enzyme was only active towards monomers containing 4 to 5 

carbon atoms as previous studies had shown. In addition, they found that the enzyme was 

only active with (R) monomers and not with the (S~ isomer. Similar results were obtained by 

Fukui and coworkers when studying the PHA synthase of Z. ramigera (Fukui, 1976). In 

1997, Witholt and coworkers studied the first MCL polymerase. They assayed the in vitro 

activity of P. oleovorans and discovered that the PHA synthase had its highest activity 

towards (R)-3-hydroxyoctanoylCoA and no activity towards either isomer of 3HBCoA 

(Kraak, 1997). 
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Importance of Medium-Chain-length PHAs 

Witholt and coworkers were the first to discover medium-chain-length PHAs in 1983 (De 

Smet, 1983). The elemental analysis of the granules obtained showed that P. oleovorans 

formed poly((3-hydroxyoctanoate) instead of poly((3-hydroxybutanoate) which was the most 

common polymer obtained in previous studies. MCL-poly(3HA) is not a single polymer but 

a family of biopolymers that are formed by different CoA-thioester monomers. In the last 

two decades different functional groups, such as epoxy-, cyano-, carboxyl-,nitrophenoxy-, 

have been introduced into MCL-poly(3HA) (Kamachi, 2001). MCL polymers have 

elastomeric properties that had not been observed in their short chain counterpart (Lee, 

2002). New studies of MCL-poly(3HA) have been hindered in part because their chiral 

monomers are not commercially available. In addition, the coenzyme A leaving group used 

by the MCL polymerise is exceedingly expensive. Other enzymes, such as the polyketide 

(PKSs) and fatty acid synthases (FASs), that accept CoA-thioester substrates, have been 

shown to tolerate and turnover truncated versions of the substrates that are less costly and 

easier to chemically synthesize (Khosla, 1999). It is unclear whether PHA synthases, which 

are proposed to be related to lipases rather than FASs (Jia, 2000), would exhibit a similar 

substrate tolerance. 

The high cost of the CoA leaving group and the fact that MCL chiral monomers are not 

commercially available are delaying the studies of MCL polymerise. Consequently, if the 

polymerise is able to accept and turnover truncated versions of the thioesters, without the 

CoA-derivative, the low cost and ease of a chiral synthesis would promote further studies on 

this type of polymerise. To probe the specificity requirements of the Pseudomonas 
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ae~uginosa, a MCL polymerase, the synthesis of chiral ~i-hydroxy-thioesters is reported 

herein. 

Previous Syntheses of Chiral (3-hydroxy Acids 

Most studies on PHAS have been completed on type I and III synthases given the 

commercial availability of the chiral hydroxybutyric acids, which makes the synthesis of 

CoA-thioesters straightforward. Unfortunately, the chiral ~3-hydroxycarboxylic acids 

required to make the monomers needed to biosynthesize MCL- poly(3HA) are not 

commercially available, which makes the production of the CoA-thioesters a particular 

challenge. 

OH O 

~OH 
R 

TBDMS-CI 
Imidazole TBDMSO O 

TBDMSO O CoA 

~SPh -~ 

R pH 8 

~~OH 
R 2. HF 

1. DCC 
Ph-SH 

OH O 

~SCoA 
R 

Figure 4. Frequently used route to CoA-thioester substrates (Yuan, 2001; Jia, 2000). 

The most commonly used chemical synthesis to obtain SCL CoA-thioesters substrates 

(see Figure 4) starts with 3-(R)-hydroxybutyric acid (R=H), which is commercially available. 

In the first step, the hydroxyl group is protected, followed by coupling with benzenethiol and 
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deprotection of the alcohol. The resulting thioester is coupled to CoA at pH 8 (Yuan, 2001; 

Jia, 2000). 

Another pathway, to this class of structures, is to use biosynthesis to obtain SCL and 

MCL CoA-thioesters substrates (Zinn, 2001). Steinbuchel and coworkers synthesize MCL 

substrates using a racemic mixture of (R,S~-3-hydroxydecanoyl, CoA, and acyl-CoA 

synthetase as the catalyst for the reaction. Unfortunately, this method yields a racemic 

mixture and requires the expensive CoA derivative for polymerase testing (Rehm, 1998). 

Clearly, acyl-CoA synthetase demonstrates no preference for the (3-stereocenter. Another 

frequent way to obtain PHB biosynthetically is through atwo-step reaction starting with 

acetyl-CoA (see Figure 5). In this reaction the enzyme ~i-thiolase makes the acetoacetyl-CoA 

which is reduced by the NADH-dependent enzyme acetoacetyl-CoA reductase, giving the 

desired product. This route still requires a relatively expensive CoA-derivative, however. 

~ Beta-

SCoA 
ketothiolase 

CoAS H 

Figure 5. PHB monomer biosynthesis. 

Acetoacetyl-
CoA 

SCoA 

NADPH+H+ NAD+ 

off o 

SCoA 
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RESULTS AND DISCUSSION 

The original goal of this project was to synthesize enantiomerically pure (3- 

hydroxythioesters with different carbon chain lengths as well as different functionalities (R3

and R4 in Figure 6). The synthesis would start with a chiral compound and the chirality 

would be kept throughout the synthetic route. A (3-hydroxyacid would be synthesized and 

then coupled to a wide variety of thiols in order to test the tolerance and turnover of the 

truncated versions of the substrates by the polymerase. This method would provide an 

inexpensive and simple way to chemically synthesize a wide variety of thioesters that can be 

used to study the specificity requirements of different kinds of type II PHA synthase. A good 

starting point for the synthesis was thought to be commercially available (,5~-3-hydroxy-y- 

butyrolactone. 

Retrosynthetic Analysis 

The principal disconnections for the retrosynthetic analysis used are illustrated in Figure 

6. In the retrosynthesis of compound I, convenient disconnections could be made at C 1 and 

C3 (Figure 6). As a result, a strategy for the synthesis of chiral (3-hydroxy-thioesters analogs 

could arise from coupling different thiols to R-hydroxycarboxylic acids. The different 

functionalities and length of the alkane chain of R~, in figure 6, would vary according to the 

thiol of choice. The array of (3-hydroxycarboxylic acids could be obtained by modifying the 

carbon chain length of intermediate II (R3 in Figure 6) via the Wittig reaction, and, by 

hydrolysing the protected carboxylate terminus, at C1, of intermediate III. Finally, 

compound III could be attained by opening the protected (5~-3-hydroxy-y-butyrolactone. 
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Therefore, the main points of the synthesis plan call for protecting the alcohol at C3, -until 

late in the synthesis, and the proper protection of the carboxylate terminus at C 1. 

R4 

O OH 

i~ _ R3
OH 

OTBDMS   Q oB~► 
'~~ R3  ~ R: N ~~ v ~~ H 

Ii 

Figure 6. Retrosynthetic analysis for thioester analogs. 

~2 R 

III 

First Synthesis and Discussion of Problems 

OBn 

IV 

The first route (Figure 7) to (R)-(3-hydroxyoctanoic acid involved the protection of the 

hydroxyl group of the lactone using benzyltrichloroacetimidate (Larsen, 1999). This 

protecting group was chosen for its stability under different conditions, such as basic and 

mildly acidic media. The lactone ring was then opened using benzyl amine as the 

nucleophile with an 80% yield as previously reported (Kanno, 2000). 

BTCA, TfOH 

CH2C12 
OH Cyclohexane 

73% 

OBn 
Bn,N OH 

H 

ida 

OBn 

Figure 7. First proposed synthetic route to thiol analogs. 

Benzylamine 
Benzene 

80% 
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In order to obtain the aldehyde needed for the Wittig reaction two different types of 

oxidations, Parikh-Doering (Smith, 1996) and Swern (Omura, 1978), were tried 

unsuccessfully. Instead of yielding the aldehyde only the cycliz~d N-acyl hemiaminal could 

be isolated as the major product (Figure 8). Cyclizations of this type have been observed 

previously (Smith, 1996). Clearly, the amide hydrogen would need to be protected to 

prevent this cyclization pathway. 

OBn Py s S03
OH ~ Bn~N Bn,N TEA, DMSO 

H H 2 

BnO~ s 

O 

Figure 8. Formation of N-acyl hemiaminal upon oxidation of the primary alcohol of the 
benzyl amide. 

Second Synthesis and Discussion of Problems. 

One method to avoid an amide hydrogen would involve making a tertiary amide from 

a secondary amine. There are a vast number of disubstituted amines that could have been 

used. 2-Oxazolidinone was the first one tried to open the lactone ring via the Weinreb 

protocol (Figure 9) (Basha, 1977; Lipton, 1980). According to the literature, similar 

reactions have proven to yield the desired product (Romo, 1998; Smith, 1996). Despite the 

fact that a variety of conditions were tried, such as reflux for 13 and 48 hours, and reflux at 

90 °C (using dichloroethane) for 12 and 24 hours, no product was observed by thin layer 

chromatography (TLC) nor by hydrogen nuclear magnetic resonance spectroscopy ('H 

NMR). 
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O" ~NH 

OBn 
H2C 

~ O OBn 
O~N'' v vOH 
v 

Figure 9. Initial attempt to open the protected (5~-3-hydroxy-y-butyrolactone using 2-
oxazolidinone 

The next attempt involved dibenzyl amine as the nucleophile. This reagent was 

coupled with the protected (5~-3-hydroxy-y-butyrolactone via the Weinreb protocol (Basha, 

1977; Lipton, 1980), providing the desired alcohol in 30%yield (Figure 10). The low yield 

obtained in this reaction was in part due to the difficulty of removing the coordinated 

aluminum complex in the acidic workup. 

BTCA, TfOH 

~ CH2C12 ~ CH2C12
OH Cyclohexane OBn 

30% 

Dibenzylamine 
Me3Al 

Dess-Martin 
CH2C12

OBn Ph3P~~ 

Bn~N~~H Toluene 
i 
Bn 

6 

H Pd / C O OH 
2~ 

 ' Bn~N 
1200 psi Bn 
97% 

8 

50% in two steps 

C 

OBn 
Bn,NJ~~~OH 

i 
Bn 

0 0~ 
Bn,N

H 

5 

Figure 10. Synthetic route to thiol analogs using benzyl amine as nucleophile. 
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The lactone opening was followed by Dess-Martin oxidation to afford the desired 

aldehyde. (Dess, 1983). This oxidation was chosen due to the mild conditions of the reaction 

which would not recemize the stereochemistry at the chiral center of the starting material, 

and the simplicity of the workup procedure. The resulting aldehyde was immediately 

reacted, in order to avoid decomposition, with butyltriphenylphosphonium bromide in a 

Wittig reaction to yield the desired product (White, 2000). Unfortunately, the simultaneous 

hydrogenation of the double bond, deprotection of the hydroxyl group, and the removal of 

the benzyl from the amide could not be completed. 

Table 3. Reaction and conditions for concomitant hydrogenation of olefin, O-benzyl group, 
and amide benzyl protecting group. 

O OH 
II 

n~N 

H 

Catalyst Solvent Pressure Time Temperature 

Palladium on Carbon (Pd/C) 

Pd/C 

Pd/C 

PdIC and ammonium formate 

Pd/C and ammonium formate 

Palladium Hydroxide 
[Pd(OH)2] 
Pd(OH)2 and ammonium 
formate 
Pd(OH)Z and ammonium 
formate 
Pd(OH)2

Pd(OH)2

Pd(OH)z

Methanol 

Ethanol 

Ethanol 

Ethanol 

Ethanol 

Ethanol 

14.7 psi 

14.7 psi 

50 psi 

5 0 psi 

SO psi 

50 psi 

Ethanol 5~0 psi 

Ethanol S 0 psi 

Ethanol 

Ethanol 

Ethanol 

5 00 psi 

1000 psi 

1200 psi 

16 hours 

16 hours 

1.5 hours 

2.0 hours 

16 hours 

16 hours 

Room temperature 

Room temperature 

Room temperature 

Room temperature 

60 °C 

Room temperature 

16 hours Room temperature 

16 hours 60 °C 

16 hours 

16 hours 

16 hours 

Room temperature 

Room temperature 

Room temperature 
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Different conditions were tried for the concomitant hydrogenation (Table 3) but 

deben lation of the benzylacetamide by hydrogenolysis was not achieved. The difficulty of 

removing a benzyl group of an amide by hydrogenolysis is not unprecedented (Greene, 

1999). The use of a strong base., such as sodium, lithium, potassium text-butoxide, t-butyl 

lithium, is known to debenzylate the benzylacetamide when hydrogenolysis has not worked.. 

Unfortunately, the use of a strong base would cause elimination of the benzyl protected 

hydroxyl group, in the compound, given the high acidity of the neighboring hydrogens. 

In view of the fact that removal of the benzyl group of the amide by hydrogenolysis 

was not possible under relatively mild or basic conditions and that the use of a mono-

substituted amine ended in cyclization of the starting material after the oxidation of the 

primary alcohol, some modifications to the first synthetic route were made. 

A Variant of the First Synthesis. 

To prevent closure of the ring after the oxidation (Figure 8), the amide and the hydroxyl 

group would have to be selectively protected. Therefore, a temporary protecting group is 

required in order to mask nitrogen and not oxygen for protection of the alcohol until late in 

the synthesis. A one pot reaction for the protection of both functional groups would be the 

best synthetic approach. The tert-butoxycarbonyl (Boc) substituent is one of the most widely 

used in synthetic organic chemistry due to the ease of introducing and removing Boc and due 

to the fact that it can easily be employed with other protecting groups (Agami, 2002). This 

synthesis required a hydroxyl protecting group that could be easily inserted and removed. 
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under neutral or acidic conditions, in order to avoid elimination. In addition, the reaction 

setting had to be similar to the conditions required to protect the nitrogen with a Boc 

substituent. As a result, trifluoroacetic anhydride (TFAA) in pyridine (Lansbury, 1996) was 

chosen (Figure 11); however, the nitrogen protection did not take place. 

OBn 
Bn ~ N J~ j~~OH 

H 

Bn, 
N 
H 

O OBn 
i~ ,OTFA 

Boc 

OBn 
Bn ~ N J~ j~~OTFA 

Boc 

Figure 11. Attempted one pot reaction to protect the hydroxyl group and nitrogen using 
TFAA and Boc respectively. 

Another hydroxyl protecting group that met all the required characteristics was 

trimethylsilyl chloride. The alcohol protection was done successfully but protection of the 

nitrogen, with a Boc substituent, did not proceed. Partial purification to remove most of the 

salts and excess reagents, which could interfere with the introduction of the Boc substituent, 

was tried unsuccessfully; the trimethylsilyl (TMS) would invariably be cleaved to produce 

the starting material again. Transient protection schemes were abandoned at this point in 

favor of routes with more stable protecting groups. 

At this point an achiral model compound was synthesized to try different protecting 

groups for the alcohol and the nitrogen (Figure 13). Protection of the alcohol as a tert- 

butyldimethylsilyl (TBDMS) ether proved to be stable and partial purification was carried 

out followed by the addition of the Boc substituent. Removal of the TBDMS group with 

hydrogen fluoride in pyridine afforded the desired product (Figure 13). Next, the same 
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synthetic procedure was tried on the chiral substrate. The protection steps were successful, 

though the yields for the protected amide were lower than in the model compound (75% 

yield for chiral material over two steps). Unfortunately, the deprotection of the alcohol with 

hydrogen fluoride in pyridine afforded starting material. Other deprotection methods were 

tried (such as boron trifluoride, diethyl etherarate, acetic acid, and tetra-n-butylammonium 

fluoride) yielding only starting material. 

Benzylamine 
Benzene 

78% 
9 

TBDMSCI 
D MAP 
CH2C12

73% 
Bn—N 

H 
10 

BOC, TH F, O H F-Py O 
TEA, DMAP OTBDMS  THE OH 

° Bn—N ° Bn—N 87 /o BOC 99 /o 

11 BOC 12 

Figure 12. Synthesis of model compound. 

The choice of amide protecting group was a p-methoxybenzyl moiety. Unfortunately, the 

reaction of the amide with base andp-methoxybenzyl chloride (Akiyama, 1990) afforded 

only low yields of the protected amide under a variety of reaction conditions (Figure 13). As 

a result, after several futile attempts to protect the carboxylate terminus it was apparent that 

this protection proved to be more difficult than expected. Anew approach to synthesize the 

thioesters analogs was developed. 
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Bn, 
N 
H 

OTBDMS ,. Bn, 

CI 

OTBDMS 

Figure 13. Amide protection with p-methoxybenzyl chloride. Conditions used: DBU, 
acetonitrile, 50 °C; NaH, THF, 0 °C; KH, THF, 0 °C 

Final Synthesis Using Braun's Chiral Auxiliary 

Despite recent progress made in stereoselective aldol reactions (Alcaide, 2002; Palomo, 

2002), the problem of addition of an a-unsubstituted acetate enolate to aldehydes in order to 

obtain enantiomerically pure ~3-hydroxycarboxylic acids has not been resolved (Lalic, 2003; 

Palomo, 2002; Braun, 1984). Therefore, the final approach to obtain the thioester analogs 

was based on the work done by Braun and coworkers on chiral acetate enolates, although the 

final product would not be as enantiomerically pure as with a route relying on a biologically-

derived chiral starting material (Braun, 1984; Devant, 1988). Indeed, the synthesis of ~i- 

hydroxyacids using Braun's chiral auxiliary, synthesized as described in Figure 14 (Braun, 

1984; Devant, 1988), gave a mixture, of 75% (R)-~i-hydroxycarboxylic acid and 25% (S)-R-

hydroxycarboxylic acid. 
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Figure 14. Final synthetic route to thiol analogs 
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The next step was protection of the hydroxyl group to avoid complications in the 

thioester _formation step. In order to .achieve this goal the alcohol and the carboxylic acid 

were protected using TBDMSCI; selective removal of the TBDMS group, attached to the 

acid portion of the molecule, was performed from the resulting di-TBDMS-protected 

compound (see Figure 14). The coupling of the thiol to the acid was a low yielding reaction 

(55-37% yield) as has been observed previously (Jacobsen, 1998), but the three desired 

thioesters were all obtained in quantities necessary for the enzymatic studies. In conclusion, 

after deprotection of the silyl protecting groups and purification, an inexpensive and 

straightforward route to chemically synthesize an ample array of thioesters that can be used 

to study specie city requirements of different kinds of type II PHA syntheses has been 

achieved. 
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CONCLUSIONS 

The initial goal of this project was to synthesize enantiomerically pure (3- 

hydroxythioesters with different carbon chain length as well as different functionalities in an 

inexpensive way. The main points of the synthesis plan called for protection of the alcohol at 

C3 and the proper protection of the carboxylate terminus at C1 (Figure 6). The first two 

synthetic routes that were attempted failed at protecting the carboxylate terminus. The first 

path (Figure 7) used amono-substituted amine which ended in cyclization of the starting 

material after oxidation of the primary alcohol. In the second synthesis (Figure 10) the main 

problem was removal of the benzyl group of the amide by hydrogenolysis. The failure of 

these syntheses lead to the idea of using selective and temporary protecting groups for the 

amide nitrogen and the primary hydroxyl group (Figures 11 —12). Unfortunately, after 

several futile attempts to protect the carboxylate terminus, it was clear that this protection 

proved to be more difficult than expected and development of a new route was needed. 

Therefore, the final approach to obtain thioester analogs was based on the work done by 

Braun and coworkers on chiral acetate enolates, even though the final product was not 

enantiomerically pure (Braun, 1984). Nevertheless, we succeeded in the synthesis of a 

natural product obtaining good yields since Braun's chiral auxiliary can be easily recovered. 

Consequently, an in vitro system using purified synthases and chemically synthesized 

thioesters, as proposed in this thesis, can be used to study the specificity requirements of 

different kinds of type II synthases, beyond that obtainable from living systems. 
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MATERIALS AND METHODS 

Except as otherwise indicated, reactions were carried out under nitrogen atmosphere in 

flame- or oven-dried glassware, and solvents were freshly distilled. Reactions were 

monitored and Rf values were determined by thin layer chromatography (TLC) on EM 

Science 250 µm precoated silica gel plates (60 F254). TLC plates were visualized with UV 

light (254 nm). Purification of products was performed by column chromatography on silica 

gel (32-63) and HPLC grade solvents. Yields refer to chromatographically and 

spectroscopically pure compounds unless otherwise indicated. 'H spectra were recorded on a 

Varian VXR-300, 13C spectra were recorded on a Varian VXR-400, and HETCOR spectra 

were recorded on a Bruker DRX-400. 

Benzyl trichloroacetimidate (BTCA) (2). 

To a solution of benzyl alcohol (2.4 mL, 23 mmol) in dichloromethane (CHzC12) (30mL) was 

added aqueous potassium hydroxide (25 mL, 50% w/w, 0.23 mol) and tetrabutylammonium 

hydrogen sulfate (33 mg, 11 mmol). The resulting solution was stirred at -15 °C for 5 

minutes. Trichloroacetonitrile was added dropwise and the reaction was stirred for 30 

minutes at -15 °C. Then, the solution was allowed to warm up to room temperature to stir for 

an additional 30 minutes. The aqueous solution was separated and then extracted with 

CH2Clz (3 X 10 mL). These extracts were combined with the organic layer and dried over 

MgSO4. The excess solvent was removed under reduced pressure and the product was 

filtered through a celite pad (1 cm) to yield the crude product as a yellow oil. 'H NMR: (300 

MHz, CDC13) 5.34 (s, 2H), 7.43 (m, SH), 8.42 (s, 1H). 
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Benzyloxydihydrofuran-2-one (3). 

A solution of (5~-3-hydroxy-y-butyrolactone (0.9 g, 9 mmol) in CHZC12 (493 mL) and 

cyclohexane (250 mL) under nitrogen was cooled to 0 °C. BTCA (5.0 g, 20 mmol) was 

added followed by the dropwise addition of trifluoromethanesulfonic acid (triflic acid, 0.05 

mL, 0.3 mmol). The resulting reaction was stir for 6 hours allowing the solution to warm up 

to room temperature. Hexanes (250 mL) were added to the reaction to precipitate the out the 

trichloroacetimidate, which was filtered off. The organic layer was washed with saturated 

sodium bicarbonate (250 mL) and dried (MgSO4). The product was chromatographed (30% 

ethyl acetate in petroleum ether) to yield a clear colorless oil (418 mg, 73%, yield}. 

Rf 0.70 (30% ethyl acetate in hexanes); 1H NMR: (300 MHz, CDC13) 2.67 (m, 1H), 4.38 (m, 

3H), 4.53 (m, 2H), 7.33 (m, SH). 

(S~-N-Benzyl-3-benzyloxy-4-hydroxybutyramide (4). 

4-Benzyloxydihydrofuran-2-one (57 mg, 0.30 mmol) was dissolved in benzene (1.0 mL) 

under nitrogen. Benzylamine (0.065 mL, 0.60 mmol) was added to the reaction and the 

resulting solution was stirred for 2.0 hours at 50 °C. The mixture was diluted with ethyl 

acetate (5 mL), quenched with aqueous hydrochloric acid (HCL) (10 ml, 1N). The organic 

layer was washed with saturated aqueous sodium chloride (NaCI) and dried (MgSO4). The 

product was chromatographed (50% ethyl acetate in petroleum ether) to yield a clear 

colorless oil (62 mg, 80%, yield). Rf 0.17 (50% ethyl acetate in hexanes);'H NMR: (300 

MHz, CDC13) 2.60 (m, 2H), 3.81 (m, 2H), 4.13 (m, 2H), 4.53 (m, 2H), 4.60 (m, 2H), 6.23 (s, 

1 H), 7.39 (m, l OH). 
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(S~-N,N-Dibenzyl-3-benzyloxy-4-hydroxybutyramide (5). 

Dry dibenzylamine (0.10 mL, 0.52 mmol) was dissolved in dry CH2C12 (3 mL} under 

nitrogen and cooled to 0 °C. Trimethylaluminum (0.31 mL, 2.0 M in toluene, 0.63 mmol) 

was added dropwise, under . nitrogen, and the resulting mixture was stirred for 2.0 hours while 

warming up to room temperature. The mixture was then cooled to 0 °C and a solution of 4- 

Benzyloxydihydrofuran-2-one (0.122 g, 0.65 mmol) in dry CH2C12 (10 mL) was added 

slowly. The reaction was allowed to warm up to room temperature. After 20 hours, a 

solution of Dry dibenzylamine (0.10 mL, 0.52 mmol) was dissolved in dry CH2C12 (3 mL) 

under nitrogen and cooled to 0 °C. Then trimethylaluminum (0.31 mL, 2.0 M in toluene, 

0.63 mmol) was added dropwise, under nitrogen, and the resulting mixture was stirred for 2.0 

hours while warming up to room temperature. This solution was added to the original 

reaction while both were at 0 °C and the resulting mixture was stirred at room temperature 

for 5 hours.. The reaction was cooled to 0 °C and slowly quenched with aqueous HCL (10 

ml, 1 N). The aqueous solution was then extracted with ethyl acetate (5 X 10 mL) and CH2C12

(5 X 10 mL). The combined organic layers were dried over MgSO4 and excess solvent was 

removed under reduced pressure. The product was chrornatographed (50% ethyl acetate in 

petroleum ether) to yield a clear yellow oil (0.072 mg, 30%, yield). Rf 0.44 (50% ethyl 

acetate in hexanes); 'H NMR: (300 MHz, CDC13) 1.26 (t, 1 H), 2.1.0 (s, 1 H), 2.81 (m, 2H), 

3.75 (m, 2H), 4.23 (m, 2H), 4.54 (s, 2H), 4.60, (m, 4H), 7.39 (m, 1 SH). 

(.S~-N,N-Dibenzyl-3-benzyloxy-4-oxobutyramide (6). 

To a solution of Dess-Martin reagent (O.Sg, solution of periodinane 15% by w/w in CH2C12, 

0.175 mmol) under nitrogen was added (S~-N,N-Dibenzyl-3-benzyloxy-4-
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hydroxybutyramide (63 mg, 0.162 mmol dissolved in 2 mL of CH2C12). The resulting 

solution was stirred at room temperature for 20 minutes, diluted with diethyl ether (3 mL), 

and washed with 3 mL of a 1:1 (v/v) solution of sodium bicarbonate and sodium sulfate (10% 

w/w in water). The aqueous layer was separated and extracted with diethyl ether (2X10 mL). 

The combined organic layers were washed with water, saturated sodium chloride, and dried 

over MgSO4 and excess solvent was removed under reduced pressure. The product was run 

through a 1 cm celite pad followed by a silica plug (2.0 cm of silica gel and eluted with 10% 

ethyl acetate in hexanes) The excess solvent was removed under reduced pressure and the 

resulting yellow oil was co evaporated with chloroform. The crude product was immediately 

carried on to the next step (0.52 mg). Rf 0.28 (30% ethyl acetate in hexanes);'H NMR: (300 

MHz, CDC13) 2.96 (m, 2H), 4.54 (m, 4H), 4.81 (m, 3H), 7.29 (m, 15H), 9.91 (s, 1 H). 

(S~-N,N-Dibenzyl-3-benzyloxy-4-enebutyramide (7). 

To a solution of n-butyltriphenylphosphonium bromide (82 mg, l .9 mmol), in toluene (3 

mL), at 0 °C, was added potassium hexamethyldisilazane (KHMDS) (0.7 mL, 0.5 M in 

toluene, 0.35 mmol). The orange solution was stirred for 30 minutes and then it was cooled 

down to -78 °C. (S~-N,N-Dibenzyl-3-benzyloxy-4-oxobutyramide (52 mg crude) was 

dissolved in toluene (1 mL) and added to the original reaction while both were at -78 °C and 

the resulting mixture was stirred at room temperature for 12 hours. The reaction was slowly 

quenched with aqueous ammonium chloride (3 mL, 1N). The aqueous solution was then 

extracted with ethyl acetate (3X3 mL) and CH2C12 (5X3 mL). The combined organic layers 

were washed with saturated aqueous sodium chloride and dried over MgSO4. The excess 

solvent was removed under reduced pressure and the product was chromatographed (10% 
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ethyl acetate in petroleum ether) giving a two step yield of 50% (34 mg,). Rf 0.42 (10% 

ethyl acetate in hexanes); iH NMR: (300 MHz, CDC13) 0.99 (m, 3H), 1.45 (m, 2 H), 2.21 (m, 

2H), 2.48 (m, 1 H), 2.95 (m, 1 H), 4.41 (m, 2H), 4.60, (m, 2H), 4.96 (m, 2H), 5.39, (m, 1 H), 

5.72 (m, -1 H), 7.26, (m, 1 SH). 

(S)-N,N-Dibenzyl-3benzyloxy-4-oxobutyramide (8). 

To a solution of Dess-Martin reagent (1 g, solution periodinane 15% w/w in CHZCl2, 0.35 

mmol) was added a solution of (S~-N,N-Dibenzyl-3-benzyloxy-4-enebutyramide (125 mg, 32 

mmol) in CH2C12 (3 mL). The mixture was stirred for 20 minutes, diluted with diethyl ether 

(3 mL) and washed with 5 mL of a 1:1 (v/v) solution of saturated aqueous NaHCO3 and 

Na2S20 3 (10% w/w in water). The aqueous layer was extracted with diethyl ether (2 X 20 

mL). The combined organic layers were washed with water and saturated aqueous NaCI and 

dried over MgSO4. The excess solvent was removed under reduced pressure and the product 

was partially purified through a silica plug (eluted with 5 %ethyl acetate in hexanes). The 

solvent was removed in vacuo giving a yellow oil (104 mg) that was carried immediately to 

the following step. 

N-Benzyl-4-hydroxybutyramide (9) 

4-Benzyloxydihydrofuran-2-one (300 mg, 3.5 mmol) was dissolved in benzene (3.0 mL) 

under nitrogen. Benzylamine (0.76 mL, 7.0 mmol) was added to the reaction and the 

resulting solution was stirred for 2.0 hours at 50 °C. The mixture was diluted with ethyl 

acetate (15 mL), quenched with aqueous hydrochloric acid (HCL) (30 ml, 1N). The organic 

layer was washed with saturated aqueous sodium chloride (NaCI) and dried (MgSO4). The 
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product was chromatographed (5 0% ethyl acetate in petroleum ether) to yield a clear 

colorless oil (490 mg, 80%, yield). Rf 0.14 (50% ethyl acetate in hexanes); iH NMR: (300 

MHz, CDC13) 1.22 (t, 1 H), 1.88 (m, 2H), 2.28 (m, 2H), 3.68 (m, 2H), 4.32 (s, 1 H), 6.28 (s, 

1 H), 7.26 — 7.3 S, (m, SH). 

N-Benzyl-4-[[(1,1-dimethylethyl)dimethylsilyl]oxy]-butyramide (10). 

A solution of N-Benzyl-4-hydroxybutyramide (150 mg, 0.85 mmol) in dichloromethane (5 

mL) was treated with imidazole (115 mg, 1.7 mmol) and chloro-tert-butyldimethylsilane 

(TBDMS) (190 mg, 1.3 mmol) at room temperature, and stirred for one hour. The organic 

layer was washed with saturated aqueous NaCI and dried over MgSO4. The product was 

partially purified using column chromatography (70% ethyl acetate in petroleum ether) to 

yield a clear colorless oil (243 mg). Rf 0.84 (100% ethyl acetate). ); 1H NMR: (300 MHz, 

CDC13) 0.018 (s, 6H), 0.88 (s, 9H), 1.93 (m, 2H), 2.94 (t, 2H), 3.63 (t, 2H), 4.15 (s, 1), 4.88 

(s, 2H), 7.28 (s, SH). 

(1-oxo-4-[[(1,1-dimethylethyl)dimethylsilyl]oxy]-butyl)(phenylmethyl)-, 1,1- 

dimethylethyl ester (11). 

A solution ofN-Benzyl-4-[[(1,l-dimethylethyl)dimethylsilyl]oxy]-butyramide (230 mg, 0.79 

mmol) in THE (6mL) was allowed to stir with di-tent-butyl dicarbonate (377 mg, 1.73 mmol) 

for 24 hours at room temperature. The mixture was washed with an aqueous solution of 

HCL (1N), water, a saturated aqueous solution of sodium bicarbonate, and a saturated 

aqueous solution of NaCI. The organic layer was dried over MgSO4 and concentrated under 

reduced pressure. The residue was purified by column chromatography (20% ethyl acetate in 
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hexanes) to give the desired product (230 mg, 87 %yield). Rf 0.75 (20% ethyl acetate in 

hexanes). 1H NMR: (300 MHz, CDCl3) 0.27 (s, 6H), 0.88 (s, 9H), 1.41 (s, 9H), 1.87 (q, 2H), 

2.97 (t, 2H), 3.66 (t, 2H), 4.89, (s, 2H), 7.26, (m, SH). 

(1-oxo-4-butanol)(phenylmethyl)-, 1,1-dimethylethyl ester (12). 

The protected alcohol (11) (60 mg, 0.18 mmol) was dissolved in THE (2.0 mL), cooled to 0 

°C, and hydrofluoric acid (0.5 mL, 10 mmol, 48%aqueous) was added. The reaction was 

allowed to warm up to room temperature and stirred for 45 minutes. The mixture was 

quenched with saturated aqueous sodium bicarbonate until pH 8.0 was reached. The THE 

was removed in vacuo, and the aqueous residue was extracted with dichloromethane (5X10 

mL). The organic layers were combined and dried (MgSO4). The product was 

chromatographed (10% ethyl acetate in petroleum ether) to give the desired product (48 mg, 

98%yield) Rf 0.70 (10%ethyl acetate in hexanes). 'H NMR: (300 MHz, CDC13) 0.90 (t, 

1H), 1.42 (s, 9H), 1.94 (q, 2H), 3.04 (t, 2H), 3.70 (t, 2H), 4.89 (s, 2H), 7.26, (m, SH). 

(S~-1,1,2-Triphenyl-1,2-ethanediol (13) 

(S~-mandelic acid methyl ester (1.00 g. 6 mmol) was dissolved in 8.00 mL of dry 

tetrahydrofuran (THF). This mixture was added drop wise, at OC, to a solution of 

phenylmagnesium bromide in THF, prepared in the usual way from magnesium (0.690 g, 28 

mmol) and bromobenzene (2.6 ml, 16 mmol). The mixture was refluxed for three hours. 

The reaction was quenched by the slow addition of 10 mL saturated aqueous ammonium 

chloride, and the resulting mixture was extracted with chloroform (2x30mL). The combined 

organics were dried (MgSO4) and concentrated under reduced pressure. The residue was 
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purified by chromatography (30% ethyl acetate in hexanes) to give the desired product (1.04 

g, 69 %yield in one step). Rf 0.35 (20% ethyl acetate in hexanes). 1H NMR: (300 MHz, 

CDC13) 2.04 (s, 1H), 3.12 (s, 1H), 5.65 (d, 1H), 7.07-7.72 (m, 15H). 

1,1,2-Triphenyl-1,2-ethanediol-2-acetate (14). 

To a solution of (S')-1,1,2-Triphenyl- l ,2-ethanediol (5 07 mg, 1.7 5 mmol) in dichloromethane, 

(8 mL), at 0 °C, was added pyridine (280 mg, 3.54 mmol) and the mixture was allowed to stir 

for 5 minutes. A solution of acetyl chloride (0.160 mL, 2.25 mmol) in dichloromethane (2 

mL) was added dropwise, under nitrogen, and the resulting mixture was stirred for 2.0 hours 

while warming up to room temperature. The reaction was quenched by the addition of 5 mL 

of water; the solvent was ~ evaporated under reduced pressure and the crystals were collected 

from the water layer. The product was washed with an aqueous solution of HCL (1 N) and 

water. iH NMR: (300 MHz, CDC13) 1.99 (s, 3H), 2.82 (s, 1 H), 6.68 (s, 1 H), 7.03-7.57 (m, 

15H). 

3-hydroxy-, 2-hydroxy-1,2,2-triphenylethyl ester (15). 

A solution of the (S~-1,1,2-Triphenyl-1,2-ethanediol-2-acetate (14). (100 mg, .33 mmol) in 

dry THE (3 mL) was slowly added to a cooled (-78 °C) solution of LDA (0.81 mmol) in dry 

THE (5 mL). The mixture was stirred at this temperature for 1 hour and allowed to reach 0 

°C. The mixture was cooled again to -78 °C and a solution of butyraldehyde (0.032 mL, 0.33 

mmol) in dry THE (1 mL) was dropwise added within 5 minutes. The mixture was stirred at - 

78 °C for 1 hour and quenched with saturated NH4C1 solution (10 mL). The mixture was 

extracted with chloroform (5X15) and the combined organic fractions were collected, washed 
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with water and dried over MgSO4. The solvent was removed in vacuo to yield a yellowish 

oil that was flash column chromatographed (90% chloroform in ethyl acetate) affording the 

desired product in 75%yield. ). Rf 0.48 (90% chloroform in ethyl acetate). 1H NMR: (300 

MHz, CDC13) 0.87 (t, 3H), 1.31 (m, 4H), 2.38 (m, 2H), 2.80 (s, 1H), 3.84 (m, 1H), 7.04-7.52 

(m, 15H). 

Hexanoic acid (16) 

Potassium hydroxide (400 mg, mmol) was added to a solution of 3-hydroxy-, 2-hydroxy- 

1,2,2-triphenylethyl ester (240 mg, 60 mmol) in methanol (30 mL) and water (IOmL). The 

mixture was refluxed for 2 hours under nitrogen. The resulting solution was cooled to room 

temperature and the methanol was removed under reduced pressure. The aqueous layer was 

extracted with chloroform (3X40 mL) to extract the chiral adduct. After the extraction 30 g 

of ice were placed in the aqueous solution, the mixture was acidified with HCl (1 N) was 

until pH 3 was reached. The resulting solution was saturated with NaCI and extracted with 

diethyl ether (5 X 60mL). The combined organic layers were dried over MgSO4, filtered and 

concentrated under reduced pressure. The product is a colorless oil (70 mg, %): 'H NMR 

(300 MHz, CDC13) 0.91 (t, 3H), 1.51 (m, 4H), 2.5 (m, 2H), 4.06 (m, 1H). 

Hexanoic acid, 3-[[(1,1-dimethylethyl)dimethylsilylJoxy) (17) 

Imidazole (0.36g, 5.3mmo1)was added to a solution of tert-butyldimethylsilyl chloride 

(TBDMSCI) (0.28 g, 1.8 mmol) in dry DMF (3.0 mL). The solution was stirred in an ice bath 

under nitrogen for 15 min, followed by the addition of ~i-hydroxy acid (0.070 g, 0.53 mmol) 

in DMF (1.0 mL). The reaction was stirred overnight at room temperature. The mixture was 
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poured in a saturated solution of NaCI (10 mL) and extracted with a 1: 3 mixture of diethyl 

ether and petroleum ether (5 X 10 mL). The combined organic layers were dried-over 

MgSO4, filtered and concentrated to give the crude bis-silylated material. This material was 

dissolved in a mixture of methanol (7.0 mL), and tetrahydrofuran (THF, 3.0 mL). Potassium 

carbonate (0.15 g) dissolved in water (2.OmL) was added, and the mixture was stirred 

overnight at room temperature. The solution was diluted with a saturated solution of NaCI 

(5.0 mL) and acidified to a pH 3.0 with 2N HCI. The solution was then extracted with a 1:3 

mixture of diethyl ether and petroleum ether (S X 10 mL). The combined organic layers were 

dried over MgSO4, filtered and concentrated. The TBDMS alcohol was removed in vacuo (2 

Torr, overnight). The product is a colorless oil (0.11 g, 83 %): iH NMR (300 MHz, CDC13) 

0.12 (d, 6H), 0.89 (s, 9H), 0.94 (t, 3H), 1.32 (m, 2H), 1.48 (m, 2H), 2.50 (m, 2H), 4.11 (m, 

1 H). 13C NMR (100 Mhz, CDC13) -4.6, -4.3, -4.2, -3.9, 14.31, 14.73, 18.6, 19.1, 26.0, 26.4, 

39.6, 40.1, 42.0, 42.4, 69.5, 69.9, .178.3 

Hexanethioic acid, 3-hydroxy-, S-phenyl ester (18) 

In 3 mL of dry DMF was dissolved 0.040 g (0.16 mmol) of Hexanoic acid, 3-[[(1,1- 

dimethylethyl)dimethylsilyl]oxy]. The solution was cooled to 0 °C, and diphenylphosphoryl 

azide (DPPA) (0.11 mL, 0.48 mmol) and triethylamine (TEA) (0.090 ml, 0.65 mmol) were 

added. After two hours, benzene thiol (0.050 mL, 0.48 mmol) was added dropwise. The 

reaction was allowed to warm slowly to room temperature. After 24 hours, 4.0 mL of water 

were added, and the resulting mixture was extracted with diethyl ether (3X5 mL). The 

combined organic layers were dried over MgSO4, filtered and concentrated in vacuo. The 

residue was partially purified by chromatography (5%ethyl acetate in petroleum ether) to 
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give the intermediate thioester. The protected thioester was dissolved in acetonitrile (3.0 

mL) and water (1.0 mL), and hydrofluoric acid (0.5 mL, 10 mmol, 48% aqueous) was added. 

After 2h, saturated aqueous sodium bicarbonate was added until pH 8.0 was reached. The 

acetonitrile was removed in vacuo, and the aqueous residue was extracted with 

dichloromethane (5X10 mL). The organic layers were combined and dried (MgSO4). The 

product was chromatographed (10% ethyl acetate in petroleum ether) to give the desired 

p roduct (17 mg, 44%, two steps). Rf 0.125 (10% ethyl acetate in hexanes); iH NMR (300 

MHz CDCI 0.94 t 3H 1.54 m 4H , 2.84 m, 2H , 4.11 m, 1 H , 7.42 (s, SH). 13C ~ 3) (~ )~ ( ~ ) ( ) ~ ) 

NMR (100 Mhz, CDC13) 14.2, 19.5, 39.0, 51.8, 70.15, 122.2, 129.5, 130.0, 133.8, 193.7 

Hexanethioic acid, 3-hydroxy-, S-[2-(acetylamino) ethyl] ester (19). 

In 3 mL of dry DMF was dissolved 0.040 g (0.16 mmol) of Hexanoic acid, 3-[[(l,l- 

dimethylethyl)dimethylsilyl]oxy]. The solution was cooled to 0 °C, and diphenylphosphoryl 

azide (DPPA) (0.11 mL, 0.48 mmol) and triethylamine (TEA) (0.090 ml, 0.65 mmol) were 

added. After two hours, N-acetylcysteamine (0.052 mL, 0.48 mmol) was added dropwise. 

The reaction was allowed to warm slowly to room temperature. After 24 hours, 4.0 mL of 

water were added, and the resulting mixture was extracted with diethyl ether (3X5 mL). The 

combined organic layers were dried over MgSO4i filtered and concentrated in vacuo. The 

residue was partially purified by chromatography (50% ethyl acetate in petroleum ether) to 

give the intermediate thioester. The protected thioester was dissolved in acetonitrile (3.0 

mL) and water (1.0 mL), and hydrofluoric acid (0.5 mL, 10 mmol, 48% aqueous) was added. 

After 2h, saturated aqueous sodium bicarbonate was added until pH 8.0 was reached. The 

acetonitrile was removed in vacuo, and the aqueous residue was extracted with 
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dichloromethane (5X10 mL). The organic layers were combined and dried (MgSO4). The 

product was chromatographed (70% ethyl acetate in petroleum ether) to give the desired 

roduct 14 m , 37%, two steps). Rf 0.21 (70% ethyl acetate in hexanes); iH NMR (300 p ( g 

MHz, CDC13) 0.93 (t, 3H), 1.54 (m, 4H), 1.96 (s, 3H), 2.74 (m, 2H), 3.04 (t, 2H) 3.46 (m, 

2H), 4.11 (m, 1 H). 13C NMR (100 Mhz, CDC13) 14.2, 19.5, 22.4, 30.2, 39.11, 39.2, 50.1, 

.71.0, 170.5, 194.8 

Hexanethioic acid, 3-hydroxy-, S-butyl ester (20) 

In 3 mL of anhydrous DMF was dissolved 0.040 g (0.16 mmol) of hexanaic acid, 3-[[(l,l- 

dimethylethyl)dimethylsilyl]oxy]. The solution was cooled to 0 °C, and diphenylphosphoryl 

azide (DPPA) (0.11 mL, 0.48 mmol) and triethylamine (TEA) (0.090 ml, 0.65 mmol) were 

added. After two hours, n-butanethiol (O.OS l mL, 0.48 mmol) was added dropwise. The 

reaction was allowed to warm slowly to room temperature. After 24 hours, water (4.0 mL) 

was added, and the resulting mixture was extracted with diethyl ether (3 x 5 mL). The 

combined organic layers were dried over MgSO4, filtered and concentrated in vacuo. The 

residue was partially purified by flash chromatography (5%ethyl acetate in petroleum ether) 

to give the intermediate thioester. The protected thioester was dissolved in acetonitrile (3.0 

mL) and water (1.0 mL), and hydrofluoric acid (0.5 mL, 10 mmol, 48% aqueous) was added. 

After 2h, saturated aqueous sodium bicarbonate was added until pH 8.0 was reached. The 

acetonitrile was removed in vacuo, and the aqueous residue was extracted with 

dichloromethane (5 x 10 mL). The organic layers were combined and dried (MgSO4). The 

residue was purified by flash chromatography (10% ethyl acetate in petroleum ether) to give 



www.manaraa.com

35 

1 
the desired product (18 mg, 52%, two steps). Rf 0.30 (10% ethyl acetate in hexanes). H 

NMR (300 MHz, CDC13) S 0.90 (m, 6H), 1.48 (m, 8H), 2.65 (m, 2H), 2.90 (t, 2H), 4.10 (m, 

13 
1 H). C NMR (100 MHz, CDC13) b 13.4, 14.8, 19.5, 21.6, 28.7, 30.9, 39.6, 50.5, 70.9, 

197.8 

Coenzyme A, 3-Hydroxyhexanoic acid (21) 

CoA (5 mg, 0.0063 mmol) was dissolved in 125 µL of SOmM potassium phosphate (KPi), 

pH 7.8 (saturated with nitrogen) in a 5 mL flask. The pH of the solution was adjusted to 7.8 

by addition of 1 N NaOH. To this solution was added 3-hydroxy-hexanethioic acid, S-butyl 

ester (7.5 mg, 0.035 mmol) in 19 µL of acetonitrile. The flask was sealed, and the reaction 

mixture was stirred at 22 ° C for 20h. The reaction mixture was extracted with diethyl ether 

(Sxl mL) to remove benzenethiol and excess hexanethioic acid, 3-hydroxy-, S-butyl ester. 
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Figure 26. 1 H NMR of 1,1,2-Triphenyl- l ,2-ethanediol (13). 
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Figure 28. 'H NMR of 3-hydroxy-, 2-hydroxy-1,2,2-triphenylethyl ester (15). 
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Figure 29. 1H NMR of hexanoic acid (16). 
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Figure 30. 'H NMR of Hexanoic acid, 3-[[(1,1-dimethylethyl)dimethylsilyl]oxy] (17). 
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Figure 31. 13C NMR of Hexanoic acid, 3-[[(1,1-dimethylethyl)dimethylsilyl]oxy] (17). 
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Figure 32. HETCOR of Hexanoic acid, 3-[[(1,1-dimethylethyl)dimethylsilyl]oxy] (17). 
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Figure 33. 'H NMR of Hexanethioic acid, 3-hydroxy-, S-phenyl ester (18) 
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Figure 34. '3C NMR of Hexanethioic acid, 3-hydroxy-, S-phenyl ester (18) 
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Figure 35. HETCOR of Hexanethioic acid, 3-hydroxy-, S-phenyl ester (18) 
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Figure 36. 1H NMR of Hexanethioic acid, 3-hydroxy-, S-[2-(acetylamino) ethyl] ester (19) 
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Figure 37. 13C NMR of Hexanethioic acid, 3-hydroxy-, S-[2-(acetylamino) ethyl] ester (19) 
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Figure 38. HETCOR of Hexanethioic acid, 3-hydroxy-, S-[2-(acetylamino) ethyl] ester (19) 



www.manaraa.com

~o 

1  1 r  I 1 1 I `  1 I 
8 7 6 5 4 3 2 1 ppm 

Figure 39. 'H NMR of Hexanethioic acid, 3-hydroxy-, S-Butyl ester (20) 
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Figure 40. 13C NMR of Hexanethioic acid, 3-hydroxy-, S-Butyl ester (20) 
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Figure 41. HETCOR of Hexanethioic acid, 3-hydroxy-, S-butyl ester (20) 
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Figure 42. 'H NMR of Coenzyme A, 3-hydroxyhexanoic acid (21). 
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Figure 43. HETCOR of Coenzyme A, 3-hydroxyhexanoic acid (21). 
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